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Abstract

A numerical technique is presented for computing dendritic growth of crystals from pure melts and binary solutions.

The governing equations are solved on a fixed Cartesian mesh and the immersed phase boundary is treated as a sharp

solid–fluid interface. The interface is tracked using a level-set field. A finite-difference scheme is presented that incorpo-

rates the immersed phase boundary with only a small change to a standard Cartesian grid Poisson solver. The scheme is

simple to implement in three-dimensions. The results from our calculations show excellent agreement with two-dimen-

sional microscopic solvability theory for pure material solidification. It is shown that the method predicts dendrite tip

characteristics in excellent agreement with the theory. The sharp interface treatment allows discontinuous material

property variation at the solid–liquid interface. This facilitates sharp-interface simulations of dendritic solidification

of binary solutions.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In previous work [1] a finite-difference technique was developed for the simulation of diffusion-

controlled growth of unstable phase boundaries. For the case of dendritic solidification of pure mate-

rials from the melt, it was demonstrated that a sharp interface approach can be developed that yields

globally second-order accurate solutions to the field equations. The interface position was computed

with first-order accuracy. In subsequent work [2,3], a finite-volume approach was devised for solving
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the incompressible Navier–Stokes equations to compute flows around fixed and moving immersed solid

bodies. While the finite-volume scheme is strictly conservative in its construction because the weak form

of the equations is solved with explicit enforcement of flux continuity on contiguous control volume

faces, extension of the technique to three-dimensions is challenging. In Part I [4] it was shown that

it is possible to obtain a finite-difference scheme, in the spirit of the ghost fluid method [5] and
immersed interface method [6,7], that yields second-order accurate solutions in the presence of embed-

ded interfaces. The results were shown to be identical to the more complicated finite volume technique.

This paper applies the basic framework laid out in [4] and demonstrates that a finite-difference method

can be constructed with considerable simplicity, while computing phase change phenomena in the strict

sharp interface limit. The technique is applied to study dendritic growth in both pure and impure melts.

The present work places the scheme on sound footing by directly comparing the results of the computations

with two-dimensional microscopic solvability theory for solidification of pure materials. The method is

shown to predict the correct physical behavior in the dendritic growth of impure materials.
2. Sharp versus diffuse interface methods for solidification

Several techniques are now available for the simulation of solidification microstructures, particularly

dendritic structures that are predominant in the bulk of solidified metallic materials. Approaches based

on phase-fields [8–11], level-sets [12–15], finite-elements [16–19], finite-difference front-tracking [1,20–22],

and cellular automata [23,24] have been employed to simulate this pattern-forming phenomenon. These
methods can be broadly classified into two categories, viz., diffuse and sharp interface methods.

From a mathematical model standpoint, diffuse interface methods [25] transmit the effects of the inter-

face to the temperature and species field equation solver through source terms in the transport equations,

viz.:
bt

on
ot

þ ~r � ð~unÞ ¼ r � bdðrnÞ þ Sð~x; tÞ. ð1Þ
The source term Sð~x; tÞ may represent the effects of latent heat release, solute partition, capillarity and

other interfacial effects. Typically, through the source term Sð~x; tÞ, the temperature and species fields

couple to the evolution of an order parameter that distinguishes the phases present. In this category,

the phase-field method is currently the most popular and was the first approach used [26–28] to deter-

mine whether the quantitative measures, such as tip radius, velocity and the selection parameter of

numerically grown dendrites could be validated against microscopic solvability theory [29,30]. By
construction, in diffuse interface methods the interface is not a sharp phase boundary but is given a

certain thickness or spread on the computational mesh. Typically, the interface thickness occupies a

few mesh spacings. Thus, both delta (singular sources residing on the interfaces, such as latent heat

and capillarity) and Heaviside (such as jump discontinuities in material properties) functions are

replaced by smoothed numerical approximations. Diffuse interface methods, particularly the phase-field

method, have been applied extensively for a wide variety of problems in solidification to date [10,26].

Improvements to the method to improve speed and efficiency have also been proposed [31–35]. The

work of Juric and Tryggvason [22] and more recently Al-Rawahi and Tryggvason [20,21] may be
considered to be a hybrid method because although the interface is tracked sharply as a curve in

2D (surface in 3D), the effect of the interface is transmitted to the field equation solver using smoothed

delta and Heaviside functions in the spirit of the immersed boundary method [36].

Sharp interface methods do not employ a source term in the governing equation. In such methods,

during the discretization procedure the spatial differential operators ð ~r;r2Þ in the equation are constructed

at points that adjoin the interface in such a way that the interfacial jump conditions are incorporated.



Y. Yang, H.S. Udaykumar / Journal of Computational Physics 210 (2005) 55–74 57
Examples of this class are the immersed interface method [7,37,38], the sharp interface method [2,39,40], the

ghost fluid method [5,41] and the XFEM method [42–45].

Comparison of a sharp interface method with solvability theory in two-dimensions was performed by

Dantzig and co-workers [15]. They used a level-set technique for tracking the front and a finite-element

method for solution of the diffusion equation. The idea of using level-sets along with a finite-difference solu-
tion of the diffusion equations with application to phase change was also used in the work of [12,14,13,46].

Three-dimensional results as well as fourth-order discretization using a ghost fluid approach for the Poisson

equation were shown in the latter papers. Finite element methods have been used to perform sharp interface

calculations with various approaches to interface tracking and solution of the field equations. Schmidt [17]

used boundary conforming unstructured finite element meshes including remeshing and local refinement in

what can be considered to be a classic sharp interface approach. In a similar vein, Jaeger and Carin [47]

have solved the problem of solidification of aqueous solutions using a method that tracks the interface

explicitly as curves on an unstructured mesh and remeshes near the interface so that the mesh conforms
locally to the interface. Zhao and co-workers [18,19] also follow the interface evolution using curve tracking

but solve the field equation using a finite-element solver by reconfiguring the interface-containing elements.

The X-FEM [43] approach involves tracking the interface using level-sets and redefining (i.e. enriching), the

elements through which the interface passes. Remeshing is not performed here but enrichment involves

redefining the interface-containing element for integration of the weak form. Pure material solidification

has been solved using this approach. Udaykumar and co-workers [2] used a finite-volume method and ex-

plicit front-tracking to compute the evolution of sharp dendritic fronts, in pure materials [48], solutions

[49], in the presence of particles such as biological cells [50] and ceramic reinforcements [51,52] and in
the presence of fluid flow [48]. The results were shown to match very well with solvability theory for den-

drites in a pure material and exact solutions and numerical benchmarks in other cases.

Typically, diffuse interface methods have been assumed to be simpler to implement, particularly in multi-

dimensions, and to more easily handle topological changes and therefore have found wide usage [10,25].

However in such method care is demanded in formulating the governing equation so that the sharp inter-

face limit can be recovered in the limit of vanishing interface thickness. Sharp interface methods rely on

straightforward field equations and interface balance conditions but have been considered to be somewhat

more difficult to implement; therefore their use has been restricted to some specific situations and to a few
practitioners. The present paper and the companion papers [4,53] seek to demonstrate that sharp interface

methods can be developed and implemented with considerable ease and applied to a variety of moving

boundary problems. It has been shown that going from two to three dimensions can also be accomplished

fairly easily with the framework presented in this paper [4]. With a level-set interface representation topo-

logical changes present no difficulties.
3. The current method

As pointed out before, the framework of a level-set method combined with the finite-difference solver for

phase change calculations is not new. This has been used by other researchers [12–15] with some differences

from the present paper. However, this paper distinguishes itself from these earlier efforts in the following

respects:

1. The scheme is presented in a simple-to-implement formulation that will involve the addition of only a

modest amount of code to a standard Cartesian grid solver. Global second-order accuracy is maintained.
2. The computation of dendritic solidification of binary mixtures is demonstrated for the first time in this

framework. This requires some care and additional algorithmic rearrangements over the pure material

case.
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3. The interface velocity has to be computed with care and the procedures for obtaining second-order accu-

rate interface velocities are described.

4. Analysis to obtain an a priori estimate of the grid required for obtaining grid-independent sharp-inter-

face solutions is performed. In the past, these requirements have been established on a case-by-case basis

and by a cut-and-try approach. An attempt is made to correlate the grid independence conditions with
the parameters that control the steady shape of the growing dendrite.

Although we have restricted computations in the present paper to two-dimensional cases, the methods

laid out in the following are easily extended to three-dimensions as demonstrated for other moving bound-

ary problems in [4].
4. Formulation for solidification of pure and impure materials

4.1. Governing equations

The governing equations for diffusive heat and solute transport are non-dimensionalized by choosing the

following scales (defined separately for each of the cases shown in the results section): length scale = X a

characteristic length for the system, time scale ¼ X 2

gL
, where gL is a characteristic diffusion coefficient,

velocity scale ¼ gL
X concentration scale = c0, the initial solute concentration, temperature scale = TS. The

non-dimensional temperature is defined to be H = (T � Tm)/TS, where Tm is the melting point of the pure

substance (or solvent) and non-dimensional concentration c = C/c0, where c0 is the concentration of solute

in the initial solution. The non-dimensionalized equations are then written as follows:

Energy equation:
oH
ot

¼ a�L=Sr2H; ð2Þ
where a�L=S is the non-dimensional thermal diffusion coefficient in the liquid/solid phase.

Species equation in the solid:
ocS
ot

¼ D�
Sr2cS ð3Þ
and species diffusion in the liquid:
ocL
ot

¼ D�
Lr2cL; ð4Þ
D�
L=S is the non-dimensional species diffusion coefficient in the liquid/solid phase.
The interface conditions become, in non-dimensional form:
V N ¼ kL � T S

HSL � gL
� kS

kL
� oH

on

� �
S

� oH
on

� �
L

� �
; ð5Þ
where kL is the thermal conductivity, HSL is the latent heat per unit volume. We define a Stefan number,

St ¼ kL�T S

HSL�gL
.

V N ¼ D�
L

ð1� kÞ � cLI
� DS

DL

� oc
on

� �
S

� oc
on

� �
L

� �
ð6Þ
and
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HL;int ¼
b1 � c0
T S

� cLI þ
b2 � c20
T S

c2LI þ
b3 � c30
T S

c3LI þ
b4 � c40
T S

c4LI � CðhÞj�; ð7Þ
where
CðhÞ ¼ c0Tm

HSLXT S

ð1� 15e cosðmðh� h0ÞÞÞ ð8Þ
is the non-dimensional capillarity parameter. C0 ¼ c0Tm

HSLT S
is a capillary length.

The values of the constants b0 to b4 are given in the results section for the particular solution (NaCl–

H2O) chosen here for the numerical calculations (corresponding to data in [54]). Note that the interfacial

tension has a directional dependency, which reflects crystalline anisotropy [15,28].
4.2. A general form of the discretization for the operators

The transport equations for scalar (heat and species) transport are discretized as follows:
bt

nn þ 1

Dt
� bd

2
½r2nn þ 1� ¼ bt

nn

Dt
þ bd

2
½r2nn�; ð9Þ
where bt and bd are coefficients accompanying the time-dependent and diffusive parts of the equations.
The diffusion term has been discretized in time using the second-order accurate Crank–Nicolson

scheme.

The phase boundary can cut through the mesh in an arbitrary fashion leading to several different

configurations of interfacial nodes. Some situations are illustrated in Fig. 1(a). The central idea here

is that the discretization procedures can be generalized in a straightforward way for implementation

purposes without concerning oneself with the details of the embedded geometry. This is facilitated

by using the distance function information provided by the levelset field that defines the interface

[4,53]. The Laplacian operator in the scalar diffusion equation can be discretized by considering deriv-
atives along the coordinate directions and the final 3D discrete form assembled in a unified manner by

using switch functions that depend on the signed distance function information [55]. The following

expressions apply where multiple (say Lmax) embedded boundaries (represented and tracked as level-

set functions /lð~x; tÞ, l = 1 to Lmax) are present in the flow. For components along the x-direction

the scheme is as follows:

Define a sign function:
ðslÞ�x ¼
ð/lÞi;jð/lÞi�1;j

jð/lÞi;jð/lÞi�1;jj

( )
;

s�x ¼ min
l¼1;Lmax

fðslÞ�xg;
ð10aÞ
where Lmax denotes the number of interfaces present in the domain.

The switching function:
v�x ¼ min
l¼1;Lmax

jmaxððslÞ�x; 0Þj þ
jð/lÞi;jj
Dx

jminððslÞ�x; 0Þj
� �

. ð10bÞ
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Fig. 1. (a) Definition of the bulk (clear circles) and interfacial (filled circles) nodes. The interface is given by the 0-level-set. (b) The

configuration of a typical interfacial node. (c) System for evaluating the normal gradients at the interface.
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Then the second derivative w.r.t. x is:
o2w
ox2

¼ aþx
ðwþx � wi;jÞ

cxDx2
� a�x

ðwi;j � w�xÞ
cxDx2

; ð10cÞ

w�x ¼ wI�x
jminðs�x; 0Þj þ wi�1;jjmaxðs�x; 0Þj; ð10dÞ

a�x ¼
1

v�x
; ð10eÞ

cx ¼
ðv�x þ vþxÞ

2
. ð10fÞ
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Note that this scheme works for the situations where the point (i, j) lies in the fluid(solid) and either one,

none or both of the neighbors (i + 1,j) and (i � 1,j) lie in the solid(fluid) phase. Also, in constructing the

three-dimensional Laplacian operator the coefficients a±y/(cyDy
2) and a±z/(czDz

2) can be calculated in a

manner identical to that a±x/(cxDx
2) for above.

The discrete form of Eqs. (2)–(4) can be constructed using the above operators. The resulting form of the
discrete system of equations retains the standard 5-point (7-point) stencil in 2(3)-dimensions. Furthermore,

assembly of the discrete equations proceeds in the above algorithm independent of whether the grid point in

question is a bulk point (i.e., away from the interface) or an interfacial point (i.e., a point adjacent to the

immersed boundary). Thus, the algorithm is simple to implement and in fact a solver operating on a regular

Cartesian mesh can be easily modified to deal with moving immersed boundaries using the above formal-

ism. This applies even in the presence of fluid flow [4]. Specification of the interfacial values (such as wIx ) in

Eq. (10) is the additional piece of information required in the solution of the transport equations.

4.3. Application of interfacial conditions

In the present general treatment of coupled heat and solute transport, several approaches for applying

the interface conditions were explored and the following method was deemed to be most suitable, within the

framework of an explicit interface update. First, Eqs. (5) and (6) are written in discrete form using the ‘‘nor-

mal probe’’ method used in [1].

Thus, for the following general form of the interface conditions (5) and (6):
V N ¼ bS

ow
on

� �
S

� bL

ow
on

� �
L

� �
; ð11Þ
where the parameter b depends on whether the temperature field or species field is used to evaluate the

interface velocity and is defined specifically later. To calculate the gradient at the interface ow
on with an

o(Dx2) error, we use the values of temperature at two points along the normal probe, as illustrated in

Fig. 1(c). Note that the location on the interface from which the normal is projected into the two phases

depends on the interface quantity that is to be computed as will be specified below.

In the liquid, the values of the variable w at the two points along the normal probe are denoted wL1 and

wL2, respectively, and are obtained by bilinear interpolation from the surrounding grid nodes. Let the

distance of these two points on the normal probe be dxL1 (=Dx, the grid size) and dxL2 (=2Dx), respectively,
from the point on the interface where the temperature is to be computed. A Taylor series expansion about

the interfacial point gives:
wL1 ¼ wLI þ
ow
on

� �
L

dxL1 þ
o
2w
on2

� �
L

ðdxL1Þ
2

2

þ oðdx3L1Þ; ð12Þ

wL2 ¼ wLI þ
ow
on

� �
L

dxL2 þ
o2w
on2

� �
L

ðdxL2Þ
2

2

þ oðdx3L2Þ. ð13Þ
From the above equations, we get the second-order approximation:
ow
on

� �
L

¼ dx2L2wL1 � dx2L1wL2 � ðdx2L2 � dx2L1ÞwLI

dxL1dx2L2 � dx2L1dxL2
ð14Þ
which may be written as (since dxL2 = 2dxL1):
ow
on

� �
L

¼ 2wL1 �
1

2
wL2 �

3

2
wLI . ð15Þ
The gradient in the solid can be similarly obtained.
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Thus, Eq. (11) becomes:
V N ¼ �bS 2wS1 �
1

2
wS2 �

3

2
wSI

� �
� bL 2wL1 �

1

2
wL2 �

3

2
wLI

� �� �
. ð16Þ
4.3.1. Interface conditions for the pure material case

For the pure material case the interface temperature is computed using the Dirichlet condition, Eq. (7),

with the species concentrations set to zero. The temperature values are obtained at the locations indicated
by the Ix and Iy in Fig. 1(c). These locations are given by:
xIx ¼ xi;j þ DxI ;; yIx ¼ yi;j; ð17aÞ
xIy ¼ xi;j; yIy ¼ yi;j � DyI ; ð17bÞ

DxI
Dx

ffi
ð/lÞIx � ð/lÞi;j
ð/lÞiþ1;j � ð/lÞi;j

�����
����� ¼ 0� ð/lÞi;j

ð/lÞiþ1;j � ð/lÞi;j

�����
�����;

DyI
Dy

ffi
ð/lÞIy � ð/lÞi;j

ð/lÞi;j � ð/lÞi;j � 1

�����
����� ¼ 0� ð/lÞi;j

ð/lÞiþ1;j � ð/lÞi;j

�����
�����.

ð17cÞ
Then, for each of the interfacial points the interface velocity is computed at the locations denoted by N in

Fig. 1(c). The point N is located by:
~xN ¼~xi;j �~ni;jð/lÞi;j; ð18Þ

where~ni;j is the normal at the grid point indexed (i, j). The node points on the normal probe projected from

this point into the solid and liquid phases are located at:
~xL1 ¼~xN þ~nN dxL1; ð19aÞ
~xL2 ¼~xN þ~nN dxL2; ð19bÞ
~xS1 ¼~xN �~nN dxS1; ð19cÞ
~xS2 ¼~xN �~nN dxS2. ð19dÞ
Bilinear interpolation is performed from the surrounding mesh points to obtain the value of the required

variable w to be used in Eq. (16), at the above points ~xL1;~xL2;~xS1;~xS2. The normal vector at N, ~nN is also

obtained by bilinear interpolation from the surrounding mesh points. These are used to compute the inter-
face velocity using Eq. (5) which is discretized using Eq. (16). For the pure material case bS ¼ St � kSkL and

bL = St.

4.3.2. Interface conditions for the impure material case

The interface velocity is first obtained, for each of the interfacial nodes, using Eq. (9) with the discrete

form expressed in Eq. (16). The variable w in this case corresponds to the concentration field. For this case

bS ¼ D�
L

DS

DLð1�kpÞcLI and bL ¼ D�
L

1
ð1�kpÞcLI . Note that the interface normal velocity is obtained at the interface

location marked N. However, this normal velocity is ‘‘extended’’ into the narrow band of the level-set rep-

resentation [4] and hence the entire narrow band is populated with a level-set velocity field. This level-set

velocity field is used to advect the level-sets.

Once the velocity is computed, the interface temperature is obtained using Eq. (5). Using the discrete
form in Eq. (16) and the fact that HLI = HSI, inversion of the equation provides the interface temperature:
HLI ¼
V N þ bS 2HS1 � 1

2
HS2

� 	
þ bL 2HL1 � 1

2
HL2

� 	
3
2
bS þ bLð Þ ; ð20Þ
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where bS ¼ St � kSkL and bL = St. Note that the value of normal velocity at the point where the interface tem-

perature is to be specified, i.e., at point Ix/y, is obtained from bilinear interpolation (of the extended velocity

field available in the narrow band of the level-set field) from the surrounding grid points. Next, the interface

composition on the liquid side of the interface is obtained from Eq. (7) at the points Ix/y, using the above

determined value of the interface temperature. The following nonlinear equation for cLI is solved using a
Newton method:
b1cLI þ b2c2LI þ b3c3LI þ b4c4LI ¼ HLI þ CðhÞj. ð21Þ

The composition on the solid side is then given by the partition coefficient:
cSI ¼ kpcLI . ð22Þ
4.4. Overall solution procedure

As described in the previous section, the interfacial conditions in the present case couple the interface

position (and curvature), temperature and composition. In previous work [49], due to the explicit interface
tracking method used, stable computations of dendritic growth required an implicit approach to couple the

boundary update and field equation solver. In the present case, due to the built-in regularization provided

by the level-set advection, an explicit approach to time-stepping the interface and temperature and species

fields works adequately. The overall solution procedure with boundary motion, for the case of an impure

material (the pure material case is specialized below by skipping steps 3, 4, 7, 8 and 9), is as follows:

1. Advance to time tn + 1 = tn + dt.
2. Compute interface temperature for each of the interfacial points. This is obtained for impure mate-

rials from the interface velocity (obtained at the end of the previous time step) using Eq. (20). This

interfacial temperature is obtained at the locations N (Fig. 1(c), Eq. (18)) corresponding to each of

the interfacial nodes. For pure materials use Eq. (7).

3. Extend the interface temperatures out (using standard level-set based extension fields as given in [55])

from the interface to populate the narrow band around the zero level-set.

4. Get cLI from HLI at each interfacial point using Eq. (21). Get cSI from Eq. (22). These interfacial com-

positions are obtained at locations N (Fig. 1(c), Eq. (18)) for each interfacial point.

5. Using Eq. (16) obtain the interface velocity at locations N for each interfacial point. For pure material
w is the temperature field while for impure materials it is the composition field. Extend this interfacial

velocity into the narrow band of the level-set field.

6. Advance the level-set to its new position.

7. For each interfacial point interpolate the HLI previously extended and stored in the narrow band to

locations such as Ix and Iy as required. Thereby calculate cLI and cSI using Eqs. (21) and (22).

8. Advance the discretized species equations in time using boundary conditions obtained in step 7.

9. Compute the interface velocity using the newly obtained species field. This repeats steps 4 and 5.

10. Repeat steps 2 and 3. This provides the interfacial temperature conditions for step 11.
11. Compute the temperature field. In order to solve the temperature field the interface temperature value

is required at points such as Ix/y in interface cells. These values are obtained by bilinear interpolation

from the extended interface temperature values HLI in the narrow band.

12. Go to step 1 for next time step.

Note that with the above explicit approach stable computations of interface evolution can be performed

with time step sizes that are controlled by a CFL-type criterion of the form dt = kdx/max(VInterface), where k
is set to 0.1 in the calculations performed.
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5. Results

In this section we compute the solidification in the stable and unstable modes for pure as well as impure

materials and compare the results of our computations with exact solutions [56], the solvability theory

results quoted in [15,28,48,57] and other numerical results [58,59]. The growth and material parameters
are varied and the dendritic tip details such as radius, velocity and selection parameter are each compared

with theoretical and computational results presented in the above papers.

5.1. The Neumann problem

The stable planar solidification of a circular seed in a pure melt is first simulated to establish order

of accuracy of the method. The configuration is shown in Fig. 2(a). The seed is placed at the center of

the domain. The Stefan number = 0.1. The exact solution for the Neumann problem is given in [56]. A
line heat sink placed at the center of the seed causes it to freeze. The boundary conditions at the edge

of the domain and the initial conditions are specified from the exact solution for the problem. The

errors in the computed temperature field (Fig. 3(a)) and interface position (Fig. 3(b)) are obtained

for different grid sizes and the results are summarized in Fig. 3. For the technique described above,

second-order accurate results are obtained. In contrast, if only one point is used in the normal probe

technique to extract the interface velocity, the accuracy of the interface position will be first order. This

is clearly shown in Fig. 3(c).
Fig. 2. Computational set-up for: (a) the stable solidification problem and (b) unstable (dendritic) solidification problems. (c) For

planar solidification of an aqueous solution.
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5.2. Unstable solidification of a pure melt

To establish the accuracy of the approach for simulation of dendritic growth, a seed crystal is placed at

the origin in the computational domain shown in Fig. 2(b). The non-dimensionalization in this case is done

using a length scale X ¼ C0 ¼ c0TmqCp

H2
SL

, the capillary length, time scale ¼ X 2

gL
, where gL = aL, temperature scale

TS = HSL/qCp. Since a fourfold symmetric crystal is grown, symmetry conditions are applied on the x- and

y-axes. The far-field condition corresponds to a non-dimensional undercooling D ¼ qCpðTm�T1Þ
HSL

¼ �0.55. The

radius of the initial seed crystal is 0.075 (5 grid spacings). In the fine mesh zone of extent 2 units shown in

Fig. 2(b), 400 · 400 grid points are employed. Outside of the fine mesh zone a linearly stretched grid is
employed consisting of 50 points. In Fig. 4 the results of the dendritic growth calculations are summarized.

The figure compares the computed dendritic tip characteristics with those obtained from microscopic

solvability theory [28,57]. Three different anisotropy strengths were tested, i.e., e = 0.01, 0.03, 0.05. The

steady-state tip radius qt (Fig. 4(a)), tip velocity Vt (Fig. 4(b)) and tip selection parameter r� ¼ 2aLc0
q2V t

(Fig. 4(c)) show excellent match with the theory.
Fig. 3. Error analysis for the Neumann problem: (a) the temperature error against mesh spacing; (b) interface location error against

mesh spacing using two probes and (c) interface location error against mesh spacing using one probe.



Fig. 4. Growth and merger of two growing circular solid–liquid fronts. The arrow shows the sequence in time.
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One advantage of sharp interface methods is that the accuracy of the discretization scheme is evident

from the construction of the spatial operators. While designing schemes that provide a desired order of

accuracy entail a modest increase in complexity over diffuse interface methods, this added care in con-

structing the scheme is an advantage from two standpoints: (1) The accuracy of the method can be

established explicitly a priori, and (2) since the interface has no thickness the features to be resolved

by the grid are related only to the length scales expected to arise from the dynamics of the problem,

i.e., the grid needs only to resolve features tangential to the interface. However, typically sharp interface
methods have relied on a posteriori convergence analysis to determine if solutions obtained can be

considered to be grid independent. It would be useful to take advantage of the predictability of the

convergence characteristics of sharp interface methods to provide guidelines as to what mesh sizes will

be necessary in order to be confident that the solutions are independent of resolution. In determining

this, the relevant length scales to be resolved in a physical problem need to be estimated. In the den-

dritic growth of pure materials two such length scales can be identified, namely the dendrite tip radius

qt and the thermal diffusion length dt ¼ a
V t
. Both these quantities can be estimated a priori based on

solvability theory. The question is, of course, what is the factor that determines an adequate grid res-
olution? To explore this, a grid refinement study was performed and the results are collated in Fig. 5.

These figures show, for the particular undercooling used (D = �0.55) the variation of percentage error

of the computed solution with respect to the exact (solvability theory) values of the dendritic tip char-

acteristics plotted for various mesh sizes. The convergence of the results with grid refinement can be

seen. Examination of these figures clarifies that the grid spacing Dxc at convergence is nearly the same

for all the anisotropies. In Table 1 the tip radius and the thermal diffusion length (estimated as dt ¼ a
V t
)

around the tip are quantified for each value of anisotropy. The numbers of grid points necessary to

resolve these two length scales are also listed in the table. It can be noted that the number of grid
points required to resolve these two length scales for convergence is vastly different for the three dif-

ferent anisotropies indicating that the demand on the grid is not posed by either the need to resolve

the tip radius or the thermal diffusion length. In fact, it is apparent that the demands on the grid



Fig. 5. Comparison of the computed tip characteristics with solvability theory for different anisotropies: (a) dendrite tip radius,

(b) dendrite tip velocity, (c) tip selection parameter.

Table 1

Comparison of the grid spacing necessary to obtain grid independent solutions for different anisotropies

e qt dt
dt
Dxc

qt
Dxc

0.05 0.0176 0.147 44.05 5.3

0.03 6.13e � 2 0.229 68.96 18.38

0.01 0.323 0.874 262.47 97.08
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are nearly independent of the tip characteristics and nearly the same for all three cases. In fact Dxc
value corresponds to approximately 2 C0 where C0 ¼ c0TmqCp

H2
SL

is a capillary length. Physically, at least

for the fairly large undercoolings considered here, it appears that this capillary length needs to be

resolved by the grid in order to obtain grid independent results. Based on this notion, it is straightfor-

ward to pick the mesh size that provides grid independent solutions for sharp interface calculations.

This estimate is useful both for selecting a suitable uniform mesh as well to establish criteria for locally

refined meshes in the vicinity of the dendrite surfaces.



68 Y. Yang, H.S. Udaykumar / Journal of Computational Physics 210 (2005) 55–74
5.3. Planar (1D) solidification of an aqueous salt solution

We compute the solidification of a sample containing an aqueous salt solution in the setup shown in

Fig. 2(c). Such a system occurs commonly in the cryopreservation of biological materials (cells and

tissue). This one-dimensional case was solved using a moving coordinate system fixed at the advancing
front by [58]. Numerical (finite-difference) solutions were obtained for the temperature and solute fields

ahead of the front. The parameters employed in the present calculations are the same as those of [54]:
c0 ¼ 0.1548 mol l�1; aL ¼ 0.115 mm2 s�1; aS ¼ 1.364 mm2 s�1; DL ¼ 7.8� 10�4 mm2 s�1;

DS ¼ 7.8� 10�7 mm2 s�1; HSL ¼ 0.333 J mm�3; Tm ¼ 273.15 K; k ¼ ðcLIÞS
ðcLIÞL

¼ 1.00� 10�3;

kL ¼ 5.36� 10�4 J mm�1 s�1 K�1; kS ¼ 2.34� 10�3 J mm�1 s�1 K�1.
The phase diagram is represented by the relationship:
T LI ¼ b0 þ b1cLI þ b2c2LI þ b3c3LI þ b4c4LI ;
where:
b0 ¼ 273.15 K; b1 ¼ �3.362 K l mol�1; b2 ¼ �0.0414 K l2 mol�2;

b3 ¼ �0.0404 K l3 mol�3; b4 ¼ �6.616� 10�4 K l4 mol�4.
The non-dimensionalization in this case uses length scale X = 1 mm, time scale ¼ X 2

gL
, where gL = DL,

temperature scale TS = b0, concentration scale=c0. The temperature at the left boundary in Fig. 2(c) (on

the solid) is decreased in time at a specified constant (non-dimensional) cooling rate B. The range of cooling
rates investigated in the following is typical of the rates employed in cryo-protocols [60–62]. The right wall

is treated as an adiabatic boundary. The solid–liquid front then advances in the +x direction.

A typical case is shown in Figs. 6(a) and (b). The cooling rate in Fig. 6(a) is B = �0.05. This is the lowest

cooling rate computed. Fig. 6(a) shows the temperature field at various instants of time as the front

advances to the right. As can be seen, at this low cooling rate, the temperature field has only mild variations

in space due to the large thermal diffusivity. However, as shown in Fig. 6(b) the solute is segregated into the

solution as the ice forms and a solute boundary layer progressively accumulates ahead of the front. The

solute layer steepens as time progresses since almost pure ice forms upon solidification. For this growth
configuration there is a region of constitutionally supercooled solution in front of the ice-liquid boundary.

The results shown in Figs. 6(a) and (b) are in excellent agreement with those in [58,59]. It is to be noted that

the present sharp interface method captures the solute buildup on the liquid side of the interface as a dis-

continuity and also treats the diffusivity jump between the solid and liquid as a jump discontinuity. Thus, in

the calculations performed here, the salt is rejected into the remaining solution entirely while nearly pure

solid (ice) forms.

The interface location for various cooling rates (highest value of �1 K/s to lowest value of �0.05 K/s) is

plotted against time in Fig. 6(c). These curves were produced to compare with identical curves in [58,59]. In
Fig. 6(c), the solid lines are curves obtained by the present method, while the dotted lines are those in [58].

There is close agreement between the results.
5.4. Dendritic solidification of a binary solution

The dendritic growth of crystals with the coupled transport of heat and solute is computed for a range of

physical parameters. These cases are designed to demonstrate the capability of the present sharp interface



Fig. 6. Percentage error (with respect to the solvability theory values) in computing the tip properties plotted against the grid spacing

employed. (a) Tip radius error, (b) tip velocity error, and (c) tip selection parameter error.
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technique to compute the large distortions of the phase boundary, while maintaining discontinuities in the

material properties and solute fields across the boundary. Here we show that the results display the correct

physically expected trends as the growth parameters are varied.

Fig. 7 shows the evolution of shapes of dendrites grown in a melt (in the domain shown in Fig. 2(b),

with the same non-dimensionalization as in Section 4.3) where the boundaries of the melt away from

the seed crystal are cooled with a constant cooling rate B = �0.1. The anisotropy strengths are varied

to produce the dendritic shapes shown in Figs. 7(a) (e = 0.01), 7(b) (e = 0.03) and Figs. 7(c) (e = 0.05).

The shapes of the dendrites for each case display the physically correct qualitative behavior, with the
lowest anisotropy dendrite showing weak tip selection. This dendrite appears to experience a tip-

splitting mode of breakdown in the later stages of growth. The highly corrugated interface is handled

well by the sharp interface approach. The low anisotropy case appears to lose tip stability and similar

to the pure material case (see discussion in Section 5.2) the grid-induced noise affects the evolution of

this weakly stabilized tip. In Figs. 7(d)–(f) are displayed the solute fields surrounding the tip for the

final shapes shown in Figs. 7(a)–(c), respectively. The microsegregation of solute in the grooves between

the dendritic arms are clearly seen in the figure. In the sharp interface method these microsegregation

patterns are clearly established because the interface is not smeared. This can be gathered from the lack



Fig. 7. 1D solidification of an aqueous solution. (a) Temperature field in the liquid and solid phases for a cooling rate of B = �0.05 K/s

plotted at time intervals of 40 s. The arrow indicates the time sequence. (b) Species concentrations in the solid and liquid phases at the

same time instants. (c) Plot of interface position against time for different cooling rates. The dotted line is the trajectory computed from

the present approach and the full line is that from Koerber et al.
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of contours of solute in the nearly pure solid. Fig. 8 shows the dendritic shapes obtained for cooling

rates an order of magnitude apart. The significant differences in the solute gradients in the boundary

layer (due to the faster growth velocity of the dendrite in Fig. 8(b)) and microsegregation are illustrated

in this figure. Finally, to establish that the grid anisotropy had no effect on the dendrite tip character-

istics, in Fig. 9 the dendrite was grown with an orientation (provided by the factor h0 in Eq. (8)) of 45�
with respect to the mesh. The shape of the tip was compared with a dendrite oriented such that the

growth directions were along the Cartesian directions, as shown in Fig. 7(c). The dendrites obtained

were found to be independent of grid anisotropy for the primary stem. The less well-resolved secondary
arms showed minor influences of the misorientation (Fig. 10).



Fig. 8. Dendrite shape evolution for r = 0.0001, b = �0.1 and (a) e = 0.01, (b) e = 0.03, (c) e = 0.05. (d)–(f) Species concentration fields

at the final shape corresponding to (a)–(c), respectively.

Fig. 9. Dendrite shapes for different cooling rates with r = 0.0001, e = 0.05 (a) B = �0.01, (b) B = �0.1.
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Fig. 10. Dendrite shape for demonstration of grid independence with r = 0.0001, e = 0.05, B = �0.01.

72 Y. Yang, H.S. Udaykumar / Journal of Computational Physics 210 (2005) 55–74
6. Summary

A sharp-interface technique for the evolution of phase boundaries on fixed Cartesian meshes is devel-

oped and validated. The central point of the paper is that the framework adopted here enables sharp-

interface dendritic growth calculations, for pure as well as impure materials, and the formulation and

implementation of the method is very simple. In terms of the solution of the heat and solute transport equa-

tions, the discretization in the presence of sharp interfaces entails only a few additional lines of code when
compared to a straightforward Cartesian grid diffusion solver with no interfaces. Extension to three-dimen-

sions should present no difficulties. Extreme interface contortions including topological changes can be

handled easily due to the level-set tracking procedure. The issues underlying second-order accurate inter-

face advection have been addressed in this work. The results for both pure and impure materials demon-

strate that the method produces accurate solidification simulations.
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